Polvadera MDWCA 2024 Consumer Confidence Report

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Water comes from four ground water wells that are chlorinated and then pumped into storage tanks, which is then gravity fed to customers.

Source water assessment and its availability

We will be calling NM rural water in regard to a source water protection assessment. You can contact Martha Graham for any questions Martha@nmrwa.org. Or if you would like more information regarding the source water assessment, please contact the Drinking Water Bureau at 505-476-8760 or toll free 1-877-654-8720.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

We have monthly meetings every second Wednesday of the month. Please call in any water leaks you might notice or water quality issues.

Description of Water Treatment Process

Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5-minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.

- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit <u>www.epa.gov/watersense</u> for more information.

Cross Connection Control Survey

The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and ensuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary.

- Boiler/ Radiant heater (water heaters not included)
- Underground lawn sprinkler system
- Pool or hot tub (whirlpool tubs not included)
- Additional source(s) of water on the property
- Decorative pond
- Watering trough

Sanitary Survey Information

On April 1, 2024, Polvadera MDWCA water system completed a site Sanitary Survey conducted by the New Mexico Environment Department, Drinking Water Bureau (DWB). During the sanitary survey, no significant deficiencies were identified.

Additional Information for Lead

Polvadera MDWCA was required by the EPA to submit a lead line inventory to NMED - Drinking Water Bureau in September 2024. Our system does not include lead service lines. The public can access this information by requesting it from the office.

Lead can cause serious health problems, especially for pregnant women and young

children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. POLVADERA MDWCA is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact POLVADERA MDWCA (Public Water System Id: NM3566628) by calling 575-838-5751 or emailing pmdwca@zianet.com Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead

Additional Information for Arsenic

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Additional Information for Nitrate

Nitrate in your drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

			Detect	Range					
Contaminants	or MRDLG	MCL, TT, or MRDL		Low	High	Sample Date	Violation	Typical Source	
Disinfectants & Disinfection By-Products									
(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)									
Chlorine (as Cl2) (ppm)	4	4	0.5	0.5	0.5	2024	No	Water additive used to control microbes	
Haloacetic Acids (HAA5) (ppb)	NA	60	4	NA	4	2024	No	By-product of drinking water chlorination	
TTHMs [Total Trihalomethanes] (ppb)	NA	80	13	13.3	13.4	2024	No	By-product of drinking water disinfection	
Inorganic Contaminants									
Arsenic (ppb)	00	10	5	4	5	2023	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	

				Detect		Ra	nge						
Contaminants	MCLG or MRDLG	T	ICL, Γ, or RDL	Y	In our ater	Low	High	Sam Dat	-	Viola	ation		Typical Source
Barium (ppm)	2		2	0.	.051	0.027	0.052	202	23	N	o	was [*] met	harge of drilling tes; Discharge from al refineries; Erosion atural deposits
Chromium (ppb)	100	1	100		3	NA	3	202	23	No		Discharge from steel and pulp mills; Erosion of natural deposits	
Fluoride (ppm)	4		4		1.56	0.53	1.56	202	2023		dep which teet ferti		ion of natural osits; Water additive th promotes strong h; Discharge from lizer and aluminum ories
Nitrate [measured as Nitrogen] (ppm)	10		10		6	00	6.88	202	24	No		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Radioactive Contaminants													
Gross Alpha Emitters (pCi/L)	00		15		.9	0.2	0.9 20		23	No		dep	ion of natural osits that are oactive
Radium (combined 226/228) (pCi/L)	00		5	0.12		0.03	0.12	202	23	No		Erosion of natural deposits	
Uranium (ug/L)	00		30	10		5	10	202	23	No		Erosion of natural deposits	
			You		Rai	nge	# Sam Excee	-	Sai	mplo	Evec	odc	
Contaminants	MCLG	AL			Low	High	Al			ate	A		Typical Source
Inorganic Contamii	nants												
Copper - action level at consumer taps (ppm)	1.3	1.3	0.32	2 NA		NA	0		20	023 N		0	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	00	15	4.6	1.6 NA		NA	0		20	023 No		0	Corrosion of household plumbing systems; Erosion of natural deposits

Violations and Exceedances

Unit Descriptions						
Term	Definition					
ug/L	ug/L : Number of micrograms of substance in one liter of water					
ppm	ppm: parts per million, or milligrams per liter (mg/L)					
ppb	ppb: parts per billion, or micrograms per liter (μg/L)					
pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)					
NA	NA: not applicable					
ND	ND: Not detected					
NR	NR: Monitoring not required but recommended.					

Important Drinking Water Definitions						
Term	Definition					
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.					
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.					
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					
MNR	MNR: Monitored Not Regulated					
MPL	MPL: State Assigned Maximum Permissible Level					
90th Percentile	Compliance with the lead and copper action levels is based on the 90th percentile lead and copper levels. This means that the concentration of lead and copper must be less than or equal to the action level in at least 90% of the samples collected.					

For more information please contact:

Contact Name: CHAVEZ, THERESA

Address: PO BOX 178

LEMITAR, NM 87823

Phone: 575-838-5751